Μαθηματικός λογισμός

Πανεπιστήμιο Αιγαίου

Τμήμα Μηχανικών Πληροφοριακών & Επικοινωνιακών Συστημάτων

Έτος: 2015-2016

Διδάσκων: Γεώργιος Κοφινάς

Περιγραφή Μαθήματος

Μαθηματική επαγωγή. Πληρότητα των πραγματικών αριθμών. Συναρτήσεις. Όρια. Συνέχεια, θεωρήματα συνεχών συναρτήσεων. Ομοιόμορφη συνέχεια. Παράγωγος, παράγωγος αντίστροφης συνάρτησης, παράγωγοι τριγωνομετρικών συναρτήσεων, διαφορικό. Εφαρμογές παραγώγων, ακρότατα, κοιλότητα, γραφήματα συναρτήσεων, θεώρημα μέσης τιμής Cauchy, κανόνας L’Hopital, γραφική επίλυση αυτόνομων διαφορικών εξισώσεων, προσεγγιστική μέθοδος Newton. Ολοκλήρωμα, αόριστο, ορισμένο, μέθοδοι ολοκλήρωσης. Όγκος στερεών εκ περιστροφής. Γενικευμένα ολοκληρώματα. Υπερβατικές συναρτήσεις. Διαχωρίσιμες, γραμμικές διαφορικές εξισώσεις πρώτης τάξης. Το θεώρημα Taylor.

Video-Διαλέξεις

Διάλεξη 01: Μαθηματική Επαγωγή (2015-11-05)

Μαθηματική Επαγωγή. Διατυπώνεται η αρχή της μαθηματικής επαγωγής ως μια ισχυρή μέθοδος απόδειξης ποικίλου είδους προτάσεων. Τύπος διωνυμικού αναπτύγματος, υπολογισμός διαφόρων αθροισμάτων και απόδειξη ανισοτήτων. Αρχή πλήρους επαγωγής και εφαρμογές. Ανισότητα αριθμητικού-γεωμετρικού μέσου.

Διάλεξη 02: Πληρότητα των πραγματικών αριθμών (2015-11-18)

Πληρότητα των πραγματικών αριθμών. Ορισμός supremum-infimum, αρχή πληρότητας πραγματικών αριθμών, πρόταση ύπαρξης infimum, παραδείγματα, Αρχιμήδειος ιδιότητα πραγματικών αριθμών, ύπαρξη ακεραίου μέρους, Ευκλείδειος αλγόριθμος διαίρεσης, πυκνότητα των ρητών και αρρήτων στους πραγματικούς.

Διάλεξη 03: Συναρτήσεις (2015-11-18)

Συναρτήσεις. Ορισμός συνάρτησης και σχετικοί ορισμοί, παραδείγματα, υποσύνολα και συναρτήσεις, ασκήσεις.

Διάλεξη 04: Όρια (2015-11-18)

Όρια. Ορισμός ορίου, μοναδικότητα, παραδείγματα, εναλλακτική πρόταση απόδειξης ορίου, όριο αθροίσματος, γινομένου, πηλίκου. Όρια τριγωνομετρικών συναρτήσεων. Όριο σύνθεσης συναρτήσεων, πλευρικά όρια, όριο στο άπειρο, άπειρο όριο, πλάγιες ασύμπτωτες.

Διάλεξη 05: Συνέχεια (2015-11-19)

Συνέχεια. Ορισμός συνέχειας, ασυνέχειας, παραδείγματα. Άθροισμα, γινόμενο συνεχών συναρτήσεων, αντίστροφη συνεχούς συνάρτησης. Σύνθεση συνεχών συναρτήσεων, τοπικό φράξιμο συνεχούς συνάρτησης, διατήρηση προσήμου συνεχούς συνάρτησης.

Διάλεξη 06: Θεωρήματα συνεχών συναρτήσεων (2015-11-19)

Θεωρήματα συνεχών συναρτήσεων. Θεώρημα ενδιάμεσης τιμής, εικόνα διαστήματος μέσω συνεχούς συνάρτησης. Ύπαρξη νιοστής ρίζας θετικού αριθμού, ύπαρξη ρίζας πολυωνύμου, φράξιμο συνεχούς συνάρτησης. Θεώρημα μέγιστης-ελάχιστης τιμής, μονοτονία (και συνέχεια αντίστροφης συνάρτησης) μιας συνεχούς και 1-1 συνάρτησης.

Διάλεξη 07: Παράγωγος (2015-11-19)

Παράγωγος. Ορισμός παραγώγου, παραδείγματα χαρακτηριστικών συναρτήσεων. Άθροισμα, γινόμενο, πηλίκο παραγωγίσιμων συναρτήσεων. Κανόνας αλυσίδας. Παράγωγος παραμετροποιημένης καμπύλης, παραγώγιση πεπλεγμένης συνάρτησης. Παράγωγος αντίστροφης συνάρτησης, παράγωγοι αντίστροφων τριγωνομετρικών. Νιοστή παράγωγος, κανόνας νιοστής παραγώγου γινομένου συναρτήσεων, διαφορικό συνάρτησης.

Διάλεξη 08: Εφαρμογές παραγώγων (2015-11-19)

Εφαρμογές παραγώγων. Ορισμός τοπικού μεγίστου-ελαχίστου, κρίσιμα σημεία. Θεώρημα Rolle, θεώρημα μέσης τιμής, 1ο και 2ο κριτήριο τοπικών ακροτάτων, μελέτη συνάρτησης. Σημεία καμπής, θεώρημα μέσης τιμής Cauchy, κανόνας L’ Hopital. Γραφική επίλυση αυτόνομων διαφορικών εξισώσεων. Μέθοδος Newton-Raphson.

Διάλεξη 09: Ολοκλήρωμα Riemann (2015-11-19)

Ολοκλήρωμα Riemann. Ορισμός διαμέρισης, κάτω-άνω ολοκλήρωμα, ορισμός ολοκληρωσιμότητας. Κριτήριο Riemann, παραδείγματα. Προσθετικότητα , γραμμικότητα ολοκληρώματος. Γινόμενο ολοκληρώσιμων συναρτήσεων, ολοκληρωσιμότητα αντίστροφης συνάρτησης. Ολοκληρωσιμότητα συνεχούς συνάρτησης, ολοκληρωσιμότητα μονότονης συνάρτησης. Θεώρημα μέσης τιμής ολοκληρώματος, παράγουσα, 1ο και 2ο θεμελιώδες θεώρημα απειροστικού λογισμού.

Διάλεξη 11: Γενικευμένα ολοκληρώματα-θεώρημα Taylor (2015-11-19)

Γενικευμένα ολοκληρώματα-θεώρημα Taylor. Ορισμός γενικευμένου ολοκληρώματος, παραδείγματα, κριτήριο άμεσης σύγκρισης, οριακό κριτήριο λόγου. Θεώρημα Taylor, παραδείγματα.

Διάλεξη 12: Ενότητα Φροντιστηρίου Μαθήματος (2015-11-19)

Φροντιστήριο στο μάθημα Μαθηματικός Λογισμός,για την καλύτερη κατανόηση του. Περιλαμβάνει δείγματα διαλέξεων από φροντιστήριο που αφορά το συγκεκριμένο μάθημα.